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Abstract We present general algorithms for the compres-
sion of molecular dynamics trajectories. The standard ways
to store MD trajectories as text or as raw binary floating
point numbers result in very large files when efficient
simulation programs are used on supercomputers. Our
algorithms are based on the observation that differences in
atomic coordinates/velocities, in either time or space, are
generally smaller than the absolute values of the coordi-
nates/velocities. Also, it is often possible to store values at a
lower precision. We apply several compression schemes to
compress the resulting differences further. The most
efficient algorithms developed here use a block sorting
algorithm in combination with Huffman coding. Depending
on the frequency of storage of frames in the trajectory,
either space, time, or combinations of space and time
differences are usually the most efficient. We compare the
efficiency of our algorithms with each other and with other
algorithms present in the literature for various systems:
liquid argon, water, a virus capsid solvated in 15 mM
aqueous NaCl, and solid magnesium oxide. We perform
tests to determine how much precision is necessary to
obtain accurate structural and dynamic properties, as well
as benchmark a parallelized implementation of the algo-
rithms. We obtain compression ratios (compared to single

precision floating point) of 1:3.3–1:35 depending on the
frequency of storage of frames and the system studied.
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When large-scale molecular dynamics (MD) simulations
are performed with highly optimized software packages
such as GROMACS [1], Desmond [2], or NAMD [3], the
files containing the resulting trajectories can become
prohibitively large. The trajectories are usually stored on
disk for later analysis and archival. The standard ways to
store MD trajectories are either in text format (possibly
compressed using standard lossless tools such as gzip [4] or
bzip2 [5]) or by writing each value as a single-precision
32-bit floating-point number (lossless tools compress these
files poorly). However, the accuracy of each value, even in
single precision, is usually larger than necessary for the
analysis. Therefore, by applying lossy compression, it is
possible to store the trajectories more efficiently. Also, by
correlating different parts of the trajectory, it is possible to
obtain even more efficient storage. Trajectory formats that
use these ideas are the XTC format [6] and the BS-VLC
format [7]. In the XTC format, the fact that atoms belonging
to the same molecules are usually stored in order is used,
while in the BS-VLC format the fact that an atom in one
frame of the trajectory (i.e., at time t ) is usually close to
itself in the next frame (at time t+Δt) is used. In the XTC
format, it is—for an accuracy of about 10−2 Å—usually
possible to store a value in 9–10 bits, which corresponds to
compression ratios of 1:3.2–3.6 compared to 32-bit floating
point. In the BS-VLC format, the compression ratio depends
on the time between each frame, but for a common frame
storage frequency of one frame per 1000 timesteps,
compression ratios of up to 1:4 can be obtained.
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Another approach, where compressing differences in the
atomic coordinates is not performed directly, is to use the
essential dynamics algorithm to compress trajectories [8].
In this algorithm, the covariance matrix of Cartesian atomic
positional fluctuations is diagonalized, and the resulting
eigenvectors and eigenvalues stored only if they make
important contributions to the positional variance. In this
approach, compression ratios of up to 1:71 can be obtained
for DNA motion if errors (RMSD) in the coordinates of
0.6 Å can be tolerated. If even larger errors are acceptable,
interpolation of the motion can give another factor of 10 in
the compression ratio, albeit for coordinate errors of 0.8 Å.
DNA motion is, however, rather uncomplicated compared
to the systems studied here, which makes the essential
dynamics approach less generic. Also, the errors obtained
using this method are not acceptable for many applications.

The XTC and BS-VLC formats are used to store atomic
positions only, not velocities. Here, we extend the ideas of
those formats: first by using different algorithms depending on
how frequently the frames are written to the trajectory file (i.e.,
how large Δt is); second by improving on the algorithms
used themselves; and third by also applying similar
algorithms for the lossy compression of atomic velocities.

Due to the discretization of the coordinates, the
maximum size of the objects that can be stored with the
new format depends on the precision of the coordinates
stored. With a largest absolute deviation of 5 × 10−3 Å, the
largest object that can be stored is about 0.5 mm in size.

We have implemented the compression algorithms in a
library, and have made this library publicly available [9].
Appendices A and B contain additional information about
our implementation choices. The routines in this library are
callable from C, C++, and Fortran.

Method

Floating point inputs

Each coordinate or velocity value from a molecular
dynamics simulation can be written as xijk, where i
represents the dimension, j is the number of the coordinate
(atom index) within each frame of the trajectory, and k is
the number of the frame in the trajectory. Each such
coordinate is stored during the molecular dynamics
simulation as either a single-precision or a double-
precision floating-point number (typically 32 and 64 bit,
respectively).

Quantization

A user-defined precision, p, is defined for each coordinate/
velocity value. A coordinate or velocity value, xijk, is

converted to an integer, eijk, by rounding to the nearest
multiple of the precision:

eðxÞ ¼ x

p

� �
: ð1Þ

The largest error in each coordinate/velocity is p
2. By

performing the quantization early, cumulative errors in later
parts of the compression chain, which can occur in the BS-
VLC format, are completely avoided. The quantization step
is the only source of loss of precision in the sets of
algorithms presented here. All further steps in the algo-
rithms are completely lossless.

Delta coding

Three different integer sequences are generated in our
compressed trajectory format—one is a direct sequence and
two are delta-coded sequences:

Sequence 1 is a straightforward one-to-one application of
Eq. 1. This sequence is termed “one-to-one”
in the discussions below:

eijk ¼ e xijk
� �

: ð2Þ
Sequence 2 is a delta of integers within each frame

(intraframe delta):

eijk ¼ e xijk
� �

if j ¼ 1
e xijk
� �� ei j�1ð Þk if j 6¼ 1

�
ð3Þ

Sequence 3 is a delta of integers between each frame
(interframe delta):

eijk ¼ e xijk
� �

if k ¼ 1
e xijk
� �� eij k�1ð Þ if k 6¼ 1

�
ð4Þ

These sequences are then used in the subsequent
compression steps.

Boundaries

The largest negative and largest positive integers in a
sequence are determined. These values are used to convert
to positive integers and to select appropriate bases that are
large enough to store all values. The boundary values are
computed for every frame or for a relatively small number
of frames, so they need not be computed for the whole
trajectory.

Converting to positive integers

In the original XTC format [6] and our BWLZH algorithm
(cf. Sect. 1.6.5), positive integers are obtained from the

2670 J Mol Model (2011) 17:2669–2685



negative integers by simply subtracting the largest negative
value in each sequence:

epositive ¼ e� elargest negative: ð5Þ

In some of the compression formats used here, a bias
toward small positive integers is preferable, so positive
integers are instead obtained for all algorithms (except
BWLZH) as follows:

epositive ¼ 1þ 2 e� 1ð Þ if e > 0
2� 2 eþ 1ð Þ if e � 0

�
ð6Þ

Compressing integer sequences

Five compression algorithms have been developed and
tested here. They differ primarily in how the integer
sequences are handled. In the stop-bits coding, each integer
value is compressed separately. In the variable base coding
and the XTC2 and XTC3 extensions of the XTC format,
groups of three values (triplets, i.e., one atomic coordinate)
are considered together. In the BWLZH coding, a large
sequence of values (up to 200,000) are handled together. In
the XTC3 format, additional compression is obtained by
performing a BWLZH compression step as well. The
different integer sequences are combined with different
compression algorithms, resulting in a larger number of
combinations. We have restricted our tests to the ten
combinations that are defined below. The compression
algorithms are each described in the sections below.

Algorithm 1: stop-bits coding

Stop-bits coding requires one parameter, n, which deter-
mines the initial value of how many bits are stored before
the next stop bit. For each value, the following algorithm is
applied:

1. The number of bits, m is set to the parameter n.
2. If the value fits into m bits, a zero-extended value m

bits long is stored.
3. The just stored value is subtracted from the value,

which is shifted m positions to the right.
4. If there are no more one bits in the value, a zero bit is

stored and no further bits are stored for this value.
5. If there are still one bits in the value, a one bit is stored.

A new number of stop bits, m, is computed as
max 1; m

2

� �� �
; and steps 2, 3, etc. are repeated.

The number of bits required to store a value depends on
the parameter n, but if n is chosen appropriately, this
algorithm can be used to rather efficiently store large values
and somewhat smaller values together. For instance, to
store the value 5, when the parameter n is set to 3, the

following bits are stored: 1010 (i.e., the value 5 followed by
a zero bit, since the value 5 fits into three bits). To store a
value of 9 with n set to 3, the following bits are stored:
001110 (i.e., the three least significant bits in the value 9,
followed by a one bit signifying that more bits remain). The
value m is then set to 1, and the final remaining one bit in 9
is stored, followed by a final zero bit, since there are no
more remaining bits.

Algorithm 2: variable base coding

In variable-base coding, three values are stored together. An
integer parameter, n, is first chosen to determine the
smallest base that the three values are stored in. Two bits
are reserved to choose the base for the three particular
values, so four different bases can be used for different
value triplets. Three of these bases are 2n, 2n+1, and 2n+2.
The last base, 2m, where m is an integer, is chosen such that
the largest possible integer can be stored. The use of two
prefix bits results in an overhead of 2

3 bits per stored value.
For instance, if the value of the parameter n is 3 and the
three values 5, 9, and 4 are to be stored, the three values
fitted do not fit in the base 2n, but they do fit in the base 2n+1,
so the following bit sequence is stored: 01010110010100.
The first two bits indicate the base 2n+1, and the three
following quartets of bits encode the values 5, 9, and 4,
respectively.

The XTC format

In the original XTC format [6], triplets of values are stored
together. These triplets can be either large or small. The
large values are stored in a base, which is predetermined to
be large enough to store any value in the sequence. The
three values, either large or small, are stored together as a
single integer calculated as bxbyzþ bxyþ x, where the
bases bx to bz of the large values are different, to allow
for efficient storage of anisotropic geometries. Storing the
three values together in one integer allows for fewer bits to
be used per value. The small value triplets, which are just
changes in position, are stored with the same base bx=by=bz.
The bases here are integer powers of 21/3 rounded to the
nearest integer, which allows storage with a resolution of 1

3
bits. In the format, a large-value triplet is followed by a
number of small-value triplets. The large values are one-to-
one conversions of the atomic coordinates, while the small
values are the position deltas with respect to the previous
coordinate in the same frame. To allow even more efficient
storage of water molecules, which is common in simu-
lations of many chemical systems, and particularly in
simulations of biological systems, the coordinates of the
first two atoms in each large-small sequence are swapped.
This is more efficient, since the distance between one
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hydrogen of the water molecule and the other hydrogen is
longer than the distances between the oxygen and the
hydrogen atoms.

Two integer variables are used to keep track of the
number and base of small values. The first variable is the
runlength, r, which can be between 0 and 8, allowing up to
9 (1 large+8 small) triplets to be stored together. The
second variable, n, is an index for an array of allowed bases
for the small values.

In this format, a single bit is used to indicate whether the
same runlength and base as used previously should also be
used for the small values, or whether a change is required.
If the bit is zero, the values for runlength and base are kept
the same as before. If the bit is one, the following 5-bit
value, v, is used to alter the runlength and base. The new
base index, n, is set to nþ v mod 3½ � � 1. The new
runlength is calculated as r ¼ v� vmod 3½ � � 1ð Þ. This
format allows very efficient storage of regular, repeated
structures, such as long sequences of water molecules.

Ideally, only one additional bit is used per molecule,
unlike variable-base coding, where two bits are required per
atom (23 bits per value). Also, up to 2

3 bits per stored value
can be saved by encoding several values into the same
integer. In total, for a molecule with four atoms, about one
bit per value can be saved by using this format rather than
variable-base coding.

Algorithm 3: XTC2

The XTC2 coding developed here is based on the XTC
format, so only the differences from the XTC format are
described here.

In the XTC format, a large-value triplet is always followed
by a number of small-value triplets (although the number of
small-value triplets can be zero). In the bit stream there are two
codes, allowing for two possibilities for the following
sequence of large + small triplets: keep the previous settings
(1 bit) or alter runlength and base (1+5 bits). Two integer
variables (n and r) are used to track the runlength and base.

In the XTC2 coding, the codes have been modified and
several other possible codes have been added. The largest
possible runlength of small triplets is 6 rather than the
8 possible in the XTC format. A boolean variable, f, has been
added to track whether the coordinates of the first two atoms
should be swapped or not. The following codes are possible:

– A triplet of large values followed by runlength-encoded
small triplets, no change in settings: one bit (1).

– Set base index and runlength: 2 bits (00)+4 bits (v).
If v is 1111, the runlength is set to 6 and the base
index is not changed. Otherwise the new base index is
set to nþ v mod 3ð Þ � 1, and the new runlength is
set to 1þ v

3

� �
.

– A triplet of large values not followed by any small
triplets, no change in settings: 4 bits (0100).

– Runlength-encoded small triplets, no change in set-
tings: 4 bits (0101).

– Set base index: 4 bits (0110)+2 bits (v). The new base
index is set to nþ v mod 2ð Þ þ 1½ � � �1 v=2½ �.

– Flip the boolean variable f that determines whether the
first two atoms should be swapped or not: 5 bits
(01110).

– Runlength-encoded large triplets, no change in settings:
5 bits (01111)+4 bits (v). The number of following
triplets is v+3.

Algorithm 4: BWLZH

Burrows–Wheeler–Lempel–Ziv–Huffman (BWLZH) coding
is based on the block-sorting algorithm of Burrows and
Wheeler [10]. In our implementation, it is combined with
Lempel–Ziv coding [11] and finally Huffman coding [12].
The algorithm has the following steps:

1. The integer sequences are formed in memory with the
frame number, k, the fastest varying followed by the
dimension, i, and finally the atom index, j.

2. For each integer sequence, the 32-bit integers are
converted to a sequence of 16-bit integers. As long as
there are nonzero bits left in the 32-bit integer: if the
integer is larger than 32767 the least significant 15 bits+
32768 are stored and the integer is shifted 15 positions to
the right; otherwise the integer itself is stored. Thus, each
32-bit integer is converted to up to three 16-bit integers.

3. Each 16-bit integer sequence is divided into blocks of
up to 200,000 values. This is a compromise between
compression ratio and compression speed. The com-
pression speed drops substantially for large blocks,
primarily due to cache misses.

4. The Burrows–Wheeler transform (BWT) [10] is applied
to the block of up to 200,000 values. Our implemen-
tation uses an initial step to detect repeating sequences
of integers with a recurrence of up to 8 values. A merge
sort with a comparison function using the information
about repeating integer sequences is then applied to
perform the block sorting. This works well for our data.

5. The sequence resulting from BWT is divided into two
streams, one containing the most significant bytes, the
other the least significant bytes. These streams are then
processed individually. Some of the correlation in the data
is lost due to this division, typically increasing the final
file sizes by 1–2%. However, the move-to-front step in
particular runs significantly faster, decreasing the com-
pression and decompression times by a factor of three.

6. Move-to-front coding [13] is applied to each data
stream.
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7. In the original Burrows–Wheeler report, and in com-
mon implementations such as bzip2, a runlength-
encoding (RLE) step is done at this stage. However,
we find that our data often contain somewhat more
complicated repetitive sequences, which is why we
apply a Lempel–Ziv-77 (LZ77) compressor at this stage
[11]. Our LZ77 compressor generates three data
streams: table, length, and offset. The first is the table
stream. A single nonrepetitive input data value is stored
in the table stream as the value+2. A repetitive sequence
with an offset of −1 is stored in the table stream as the
value 0, and a length (up to 65535) is stored in the length
stream. A repetitive sequence with an offset that is
different from −1 (up to −65535 is supported) is stored in
the table stream as the value 1, the length is stored in the
length stream, and the offset in the offset stream. Note
that in some cases the length stream or the length and
offset streams may not contain any values.

8. Up to three streams (table, length, and offset) are
encoded separately using a Huffman coder capable of
handling values from 0 to 65537. The largest Huffman
code length is restricted to 31 bits, to ensure that each
value fits into an integer. It is, however, very unlikely
that Huffman codes that long would result from
common data.

Algorithm 5: XTC3

The XTC3 coding developed here is an extension of the
XTC2 format and a combination with the BWLZH
algorithm. In the XTC3 coding, the different kinds of data
generated are separated into separate data streams. The data
streams are all individually compressed with the BWLZH
algorithm (steps 2 and forward), or by using base
compression as in the XTC2 format. In XTC/XTC2 coding
there are two ways to describe the coordinate data: either
the actual coordinate of the atom (a large triplet) or
intraframe delta coding (runlength-encoded small triplets).
In XTC3 coding, the runlength-encoded small triplets are
handled in the same way as in the XTC2 format, but for the
large triplets there are three possible ways to describe the
data: either the actual coordinate of the atom (the same as in
the XTC/XTC2 formats), an intraframe delta to the
previous atom (either a large or small triplet), or an
interframe delta of the atomic position compared to the
previous position of the same atom. These three different
ways to store the large triplets are stored in three different
data streams. Thus, there are in total six streams of data: the
codes describing the actual data, the runlengths, the three
different streams of the large triplets, and the stream of
small triplets. A variable, s, has been added to keep track of
the current type of large stream.

The following codes are used to describe the data:

0 A triplet of large values followed by runlength-encoded
small triplets, no change in settings.

1 Set the runlength of small triplets. The runlength, r, is
stored in a separate data stream. For performance
reasons the largest runlength allowed has been set to 12.

2 A triplet of large values not followed by any small
triplets, no change in settings.

3 Runlength-encoded small triplets, no change in settings.
4 Flip the boolean variable, f that determines whether the

first two atoms should be swapped or not.
5 Runlength-encoded large triplets, no change in settings.

The runlength is stored in a separate data stream. For
performance reasons the largest runlength allowed has
been set to 1024.

6 Change the variable s encoding the type of large triplet
to “actual coordinate of atom.”

7 Change the variable s encoding the type of large triplet
to “intra frame delta coding.”

8 Change the variable s encoding the type of large triplet
to “inter frame delta coding.”

The XTC3 format should be the best format when the
atoms in the molecules have moved further (in time) than
typical intramolecular distances, but when there are still
correlations in atomic positions in time. Note that this may
differ per atom in an inhomogeneous system. The streams
of data are compressed here using either the BWLZH
format or base compression; whichever is most efficient for
each data stream. Among the tests performed here, most of
the streams in the XTC3 format end up being compressed
by BWLZH coding, although the stream with the actual
directly stored coordinate data is usually slightly better
compressed with base compression. The base compression
is substantially faster than the BWLZH compression. For
this reason we have, for some systems, also performed tests
of the XTC3 algorithm using only base compression for the
coordinate streams.

Sequences and algorithms

Table 1 shows the ten different combinations of integer
sequences and compression algorithms tested here.

Blocks of frames

When the interframe delta sequence is used, time-
dependent frames are generated; i.e., to decompress frame
n, one needs to decompress all frames 1 to n − 1. This is
inconvenient, for example, if one is interested in the
properties of only the last half of a trajectory. For this
reason, the trajectories are divided into blocks of frames,
where the first frame of every block is encoded with the
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one-to-one or the intraframe delta sequences. The file offset
for the start of each block of frames is stored in the
trajectory file or in a separate index file. This allows fast
random access to different parts of the trajectory. The
number of frames in each block is controlled by a
parameter, C.

Parallelization

The compression can take a long time, especially when the
BWLZH algorithm is used. For this reason we have
parallelized the compression routines. The parallelization
is coarse grained, compressing each block of frames
separately. When N processes are used in a simulation and
there are C frames in each block, compression is performed
once CN frames have been collected in memory. The
parallelization is done in three steps:

1. Collection of frames. All frames, C in each block, are
collected into the N processes with ranks numbered
from 0 to N − 1. A frame numbered i is collected at
rank i

C

� �
. In a replicated data MD code, all ranks have

identical information about all coordinates, so this is a
simple local memory copy operation. In a nonreplicated
data MD code where not all of the processes have
identical information, such as when the domain-
decomposition technique is used, a gather operation
from all processes to rank i mod C is required.
Information about the global identity of each particle
coordinate/velocity is also required in this case.

2. Parallel compression. All processes compress their
individual blocks of frames.

3. All processes send the compressed frames to rank 0,
which writes the data to disk. It is possible to perform
this step in parallel with parallel I/O, but the relatively
small size of the compressed data makes this operation
quick compared to the compression time, meaning that

parallel I/O is not usually necessary. However, for large
systems, I/O can become the bottleneck; see for
instance [14].

Results and discussion

Examples

The following molecular dynamics simulations have been
performed:

1. Liquid argon: 10,000 argon atoms in a cubic cell. A
standard Lennard–Jones potential was used [15] with a
spherical cutoff of 9 Å. The NVT ensemble was used
with a density of1.42 g cm−3, and the temperature was
kept at an average of 84 K using a Nosé–Hoover
thermostat. The velocity Verlet integrator [16] was used
with a 5 fs time step. The simulation was equilibrated
for 10 ps and the production run was 0.5 ns.

2. Liquid water: 1000 TIP4P [17] water molecules in a
cubic cell. The interactions were truncated using a
spherical cutoff of 9 Å. The NVT ensemble was used
with a density of 1 g cm−3, and the temperature was kept
at an average of 300 K using a Nosé–Hoover thermostat
[18, 19]. The velocity Verlet integrator was used with a
1.5 fs time step. The RATTLE algorithm [20] was used
to keep the water molecules rigid, and the method of
Ciccotti [21] was used to treat the massless site of the
TIP4P model. The simulation was equilibrated for 20 ps,
and the production run was 150 ps.

3. Solid magnesium oxide: 1372 magnesium and 1372
oxygen ions modeled using the shell model of Harding
and Harker [22]. The NμT ensemble (constant stress,
constant temperature) was used with an initial density
of 3.58 g cm−3, and the temperature was kept at an
average of 300 K using a Nosé–Hoover thermostat. The
Cleveland modification [23] of the Parrinello–Rahman
[24] equations kept the stress constant. Coulomb
interactions were computed using Ewald lattice sums
[15]. A spherical cutoff of 9 Å was used for the short-
range interactions. The velocity Verlet integrator was
used with a timestep of 0.5 fs. The method of adiabatic
dynamics was used to solve for the shell positions [25].
The simulation was equilibrated for 5 ps and the
production run was 75 ps.

4. Virus capsid: the capsid of the satellite tobacco necrosis
virus [26] solvated in TIP3P [17] water with 15 mM
NaCl. In total 1,005,865 atoms (198,480 protein atoms,
806,451 water atoms, 934 ions). The temperature was
kept at an average of 300 K and the pressure at 1 bar
using Berendsen weak coupling [27]. The integration
time step was 5 fs and the SETTLE algorithm [28] was

Table 1 Combinations of sequences and compression algorithms
used for the compression of coordinates and velocities

Sequence, algorithm Coordinates Velocities

One-to-one, stop bits No Yes

One-to-one, variable base No Yes

One-to-one, XTC2 Yes No

One-to-one, XTC3 Yes No

One-to-one, BWLZH No Yes

Intraframe, variable base Yes No

Intraframe, BWLZH Yes No

Interframe, variable base Yes Yes

Interframe, stop bits Yes Yes

Interframe, BWLZH Yes Yes
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used to keep the water molecules rigid, and the P-
LINCS algorithm [29] was used to keep all bond
lengths constant. The position of the hydrogen bonds
were calculated based on the heavy atoms or
constrained with the P-LINCS algorithm in such a
way that the bond angle was constant relative to the
heavy atoms. Short-range non-bonded pair interactions
(Lennard–Jones and electrostatic) were computed
within a spherical cut-off of 1.15 nm, and long range
electrostatic interactions were computed using Ewald
lattice sums. The solvated starting structure was energy
minimized, and the solvent was equilibrated, during

which the atoms of the capsid were positionally re-
strained. The production run used for the analysis was
calculated in parallel on 96 CPUs.

Compression

Figures 1, 2, 3 and 4 shows the compression ratios for the
atomic coordinates and velocities for the different algorithms
as a function of time between each frame. Appendix C
contains detailed information about the compression results.
The precision, p, is for the coordinates set to round to the
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velocities rounded to the nearest 0.1 Å/ps. In both a and b, the
compression ratio when a frame is stored every 1000 steps is shown
magnified
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nearest 0.01 Å and for the velocities to round to the nearest
0.1 Å/ps. The ratio is the compressed size against 32-bit
single-precision floating-point values. For comparison, the
results obtained when compressing text files, where the atomic
coordinates are written with the same precision, using gzip
and bzip2 at the highest supported compression (flag −9), are
shown as well.

When storing a frame every timestep, the compression
ratios for the coordinates range from 1:20 to 1:35. The
interframe delta coding and the BWLZH algorithm is the best
combination for this frequency. When storing frames more
seldomly, the compression ratio goes down, and when a frame
is stored every 1000 timesteps, the ratio is between 1:3.3 and
1:6.2. At this frequency, different algorithms are the most
efficient for the different systems. For liquid argon, the
interframe delta and the BWLZH algorithm are still the most
efficient, for TIP4P the XTC3 coding is the most efficient, for

MgO, the XTC3 coding and the intraframe coding together
with the BWLZH algorithm are about as good as each
other, while for the virus simulation the XTC3 coding is
the most efficient, even when the XTC3 algorithm is
restricted to base compression. For comparison, the ratios
obtained with gzip range from 1:1.5 to 1:2.4, and for bzip2
from 1:1.9 to 1:5.7. For all cases studied here, at least one
of the the algorithms developed here is better than both
gzip and bzip2, and each of these is always worse than at
least one of the algorithms developed here.

The compression ratios of the velocities range from 1:11
to 1:30 when a frame is stored every timestep with the best
algorithm: the interframe delta and the BWLZH algorithm.
When a frame is stored every 1000 steps, the ratio varies
from 1:3.7 to 1:5.2, and the one-to-one coding and the
BWLZH algorithm are the best. For the virus, the one-to-
one coding and the variable base algorithm are the best.
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Fig. 4 a–b Compression ratio versus 32-bit single-precision values for the different compression algorithms for the virus-in-water trajectory: a
the coordinates rounded to the nearest 0.01 Å; b the velocities rounded to the nearest 0.1 Å/ps. See Fig. 1 for legend
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Figure 5 shows compression ratios for the simulation of
TIP4P water when very high accuracy is used in storing the
coordinates and velocities, although this is not usually
needed; see Sect. 3 and Fig. 6. For the coordinates,
compression ratios of between 1:1.7 and 1:3.8 can be
obtained, while the precision obtained is about the same as
the one with single precision. For the velocities, compres-
sion ratios of between 1:1.7 and 1:2.3 are obtained, while
the precision is somewhat less than that obtained from
single-precision floating point.

Considering all the tests performed for the different
systems, the different accuracies used, and the different
times between the frames, the only two algorithms among
those developed here that are never the best are the

intraframe delta sequence together with the variable-base
coding and the one-to-one sequence together with the stop-
bits coding. For each of the other eight algorithms, there is
at least one case where it is the best choice. Appendix A
contains information about how the optimization algorithms
are chosen in our implementation.

Parallelization

Table 2 shows the compression timings for the compression
of the liquid argon model containing 10,000 argon atoms
for 100,000 timesteps simulated using a domain decompo-
sition code and written every timestep. The resulting
trajectory file is about 900 MB in size, which should be
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original single-precision trajectory and the trajectory compressed with

lossy compression with coordinate values rounded to the nearest
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Fig. 5 Compression ratio versus 32-bit single-precision values for the
liquid TIP4P water trajectory for the different compression algorithms
when high precision is used to store the coordinates and velocities.

The coordinates and velocities are rounded to the nearest 10−5 Å and
10−4 Å/ps, respectively. See Fig. 1 for legend
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compared to the ~22 GB file that would result from storing
the positions and velocities in single precision. The tests
were run on a cluster of dual quad-core Intel X5520 nodes
with an Infiniband DDR interconnect.

Properties from compressed trajectories

The compression algorithms presented here are lossy (i.e.,
the least significant digits are removed from each value; see
Sect. 1.2). The accuracy to choose for the compressed
trajectory depends on which properties are to be computed
from the trajectory. Here, we present two examples of
properties computed from the compressed trajectories: the
radial distribution function, and the velocity autocorrelation
function. Figure 6 shows the intermolecular O...H radial
distribution function and the hydrogen velocity autocorre-
lation function for the TIP4P water trajectory, stored to a
precision of 0.01 Å for the coordinates and 0.1 Å/ps for the
velocities, as compared to the single-precision trajectory (a
precision of about 10−5 Å or Å/ps). The difference (i.e., the
error) is shown as well. The error is very small in both
cases. Thus, storing trajectories in compressed form has no
practical effect on the properties calculated here.

Conclusions

We have developed and tested different trajectory compres-
sion algorithms and performed tests of these for four
different MD simulations, from solid magnesium oxide
over liquid argon and water to biomolecular systems.
Which compression algorithm is optimal depends on the
chemical system, how often the frames are stored, as well
as the precision required. The compression ratio strongly
depends on how often the frames are stored. If frames are
stored seldomly, the algorithms that use differences in
atomic coordinates within each frame are the most optimal,

and the lower bound of the compression ratio is determined
by this case. When the precision in positions is set to
0.01 Å and the precision in velocities is 0.1 Å/ps, the
compression ratios obtained for the coordinates and
velocities when frames are rarely stored lie between 1:3.3
to 1:6.2. When one frame is stored every timestep, the ratio
goes up to between 1:20 and 1:35 for the coordinates and
between 1:11 and 1:30 for the velocities. The accuracies of
these trajectories are found to be large enough to not have
any practical impact on the results for the radial distribution
function and hydrogen velocity autocorrelation function.
Even when a very high accuracy is desired, compression
ratios of at least 1:1.7 can be obtained.
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provided by the Uppsala Multidisciplinary Center for Advanced
Computational Science (UPPMAX), and resources provided by SNIC
through the National Supercomputer Centre (NSC).

Appendix

A. Automatic selection of optimal compression algorithms

The optimal compression algorithm to use depends on the
system simulated and the frequency with which frames are
written to the trajectory file. The first time a block of frames
is to be compressed and written to disk, we run a test of all
compression algorithms and choose the one that gives the
smallest compressed size. This test is performed only once,
so all subsequent blocks are compressed using the same
compression algorithm as initially determined. The selec-
tion of algorithms to include in the test is controlled by a
parameter to the library routines.

B. Portable storage

Our implementation writes all integers with the least
significant byte first, making the file format essentially
little endian. However the file format is completely
portable, since all external (I/O) references in our imple-
mentation are done using individual bytes only. This means
that any system endianness—either big, little, or mixed—is
handled portably. Also, we never store floating point
values, only properly scaled fixed point numbers (integers).
All text stored in the file is written as ASCII (automatic
conversion to/from the source encoding is performed).

C. File sizes

Tables 3, 4, 5, 6, 7 and 8 show the raw file sizes from the
simulation trajectories compressed with the different
algorithms.

Table 2 The compression times per frame (t) as a function of the
number of cores (N) for the compression of both positions and
velocities for 100,000 frames each containing 10,000 argon atoms.
The interframe delta and the BWLZH algorithm were used for both
the positions and the velocities. The scaling results are also shown,
where S= t/t(N=1)

N t(s) S

1 0.11 1.0

8 0.015 7.3

16 0.0088 12.5

32 0.0049 22.4

64 0.0024 45.8
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Table 3 Trajectory file sizes in bytes from the liquid argon simulation trajectory. The results for different compression algorithms are shown. For
comparison, the uncompressed trajectories where values are stored as 32-bit floats are also shown

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– 32-bit float – 5.0 fs 1000 ≈ 10−5 – 120

– 32-bit float 32-bit float 5.0 fs 1000 ≈ 10−5 ≈ 10−5 240

– Text – 5.0 fs 1000 0.01 – 176

– Text, gzip – 5.0 fs 1000 0.01 – 70.9

– Text, bzip2 – 5.0 fs 1000 0.01 – 48.1

1 XTC – 5.0 fs 1000 0.01 – 50.8

1 Intraframe, var. base (n=11) – 5.0 fs 1000 0.01 – 52.9

1 One-to-one, XTC2 – 5.0 fs 1000 0.01 – 49.5

1 Intraframe, BWLZH – 5.0 fs 1000 0.01 – 54.9

1 One-to-one, XTC3 – 5.0 fs 1000 0.01 – 49.5

1 One-to-one, XTC2 One-to-one, stop bits (n=4) 5.0 fs 1000 0.01 0.1 74.5

1 One-to-one, XTC2 One-to-one, var. base (n=4) 5.0 fs 1000 0.01 0.1 72.6

1 One-to-one, XTC2 One-to-one, BWLZH 5.0 fs 1000 0.01 0.1 72.5

100 Interframe, stop bits (n=1)a – 5.0 fs 1000 0.01 – 10.1

100 Interframe, var. base (n=1)a – 5.0 fs 1000 0.01 – 9.21

100 Intraframe, BWLZHa – 5.0 fs 1000 0.01 – 15.2

100 Interframe, BWLZHa – 5.0 fs 1000 0.01 – 15.2

100 Interframe, BWLZHa – 5.0 fs 1000 0.01 – 4.30

100 One-to-one, XTC3a – 5.0 fs 1000 0.01 – 8.71

100 Interframe, BWLZHa Interframe, stop bits (n=1)b 5.0 fs 1000 0.01 0.1 13.4

100 Interframe, BWLZHa Interframe, var. base (n=4)b 5.0 fs 1000 0.01 0.1 12.5

100 Interframe, BWLZHa One-to-one, BWLZHb 5.0 fs 1000 0.01 0.1 9.18

100 Interframe, BWLZHa Interframe, BWLZHb 5.0 fs 1000 0.01 0.1 8.31

– Text, gzip – 50 fs 1000 0.01 – 70.9

– Text, bzip2 – 50 fs 1000 0.01 – 54.5

100 Interframe, stop bits (n=3)a – 50 fs 1000 0.01 – 21.3

100 Interframe, var. base (n=4)a – 50 fs 1000 0.01 – 20.1

100 Intraframe, BWLZHa – 50 fs 1000 0.01 – 25.4

100 Interframe, BWLZHa – 50 fs 1000 0.01 – 12.5

100 One-to-one, XTC3a – 50 fs 1000 0.01 – 20.0

100 Interframe, BWLZHa Interframe, stop bits (n=3)b 50 fs 1000 0.01 0.1 31.0

100 Inter frame, BWLZHa Interframe, var. base (n=3)b 50 fs 1000 0.01 0.1 29.9

100 Interframe, BWLZHa One-to-one, BWLZHb 50 fs 1000 0.01 0.1 26.4

100 Interframe, BWLZHa Interframe, BWLZHb 50 fs 1000 0.01 0.1 25.4

– Text, gzip – 500 fs 1000 0.01 – 70.9

– Text, bzip2 – 500 fs 1000 0.01 – 54.6

100 Interframe, stop bits (n=5)a – 500 fs 1000 0.01 – 32.3

100 Interframe, var. base (n=6)a – 500 fs 1000 0.01 – 30.7

100 Intraframe, BWLZHa – 500 fs 1000 0.01 – 35.2

100 Inter-frame, BWLZHa – 500 fs 1000 0.01 – 30.2

100 One-to-one, XTC3a – 500 fs 1000 0.01 – 30.5

100 Interframe, BWLZHa Interframe, stop bits (n=5)b 500 fs 1000 0.01 0.1 57.3

100 Interframe, BWLZHa Interframe, var. base (n=5)b 500 fs 1000 0.01 0.1 55.4

100 Interframe, BWLZHa One-to-one, BWLZHb 500 fs 1000 0.01 0.1 53.0

100 Interframe, BWLZHa Interframe, BWLZHb 500 fs 1000 0.01 0.1 54.0

– Text, gzip – 5.0 ps 100 0.01 – 7.09
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Table 3 (continued)

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– Text, bzip2 – 5.0 ps 100 0.01 – 5.46

100 Interframe, stop bits (n=9)a – 5.0 ps 100 0.01 – 3.90

100 Interframe, var. base (n=8)a – 5.0 ps 100 0.01 – 3.65

100 Intraframe, BWLZHa – 5.0 ps 100 0.01 – 4.08

100 Interframe, BWLZHa – 5.0 ps 100 0.01 – 3.61

100 One-to-one, XTC3a – 5.0 ps 100 0.01 – 3.64

100 One-to-one, BWLZH Interframe, stop bits (n=5)b 5.0 ps 100 0.01 0.1 6.30

100 One-to-one, BWLZH Interframe, var. base (n=5)b 5.0 ps 100 0.01 0.1 6.11

100 One-to-one, BWLZH One-to-one, BWLZHb 5.0 ps 100 0.01 0.1 5.90

100 One-to-one, BWLZH Interframe, BWLZHb 5.0 ps 100 0.01 0.1 5.98

a One-to-one, XTC2 is used for the first frame in each block
b One-to-one, BWLZH is used for the first frame in each block

Table 4 Trajectory file sizes in bytes from the liquid water simulation trajectory. The results for different compression algorithms are shown. For
comparison, the uncompressed trajectories where values are stored as 32-bit floats are shown

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– 32-bit float – 1.5 fs 1000 ≈ 10−5 – 48

– 32-bit float 32-bit float 1.5 fs 1000 ≈ 10−5 ≈ 10−5 96

– Text – 1.5 fs 1000 0.01 – 68.2

– Text, gzip – 1.5 fs 1000 0.01 – 25.8

– Text, bzip2 – 1.5 fs 1000 0.01 – 17.8

1 XTC – 1.5 fs 1000 0.01 – 13.3

1 Intraframe, var. base (n=7) – 1.5 fs 1000 0.01 – 15.1

1 One-to-one, XTC2 – 1.5 fs 1000 0.01 – 13.4

1 Intraframe, BWLZH – 1.5 fs 1000 0.01 – 16.9

1 One-to-one, XTC3 – 1.5 fs 1000 0.01 – 13.5

1 One-to-one, XTC2 One-to-one, stop bits (n=5) 1.5 fs 1000 0.01 0.1 26.7

1 One-to-one, XTC2 One-to-one, var. base (n=8) 1.5 fs 1000 0.01 0.1 26.4

1 One-to-one, XTC2 One-to-one, BWLZH 1.5 fs 1000 0.01 0.1 26.8

100 Interframe, stop bits (n=1)a – 1.5 fs 1000 0.01 – 4.82

100 Interframe, var. base (n=2)a – 1.5 fs 1000 0.01 – 4.71

100 Intraframe, BWLZHa – 1.5 fs 1000 0.01 – 4.83

100 Interframe, BWLZHa – 1.5 fs 1000 0.01 – 2.42

100 One-to-one, XTC3a – 1.5 fs 1000 0.01 – 9.98

100 Interframe, BWLZHa Interframe, stop bits (n=3)b 1.5 fs 1000 0.01 0.1 11.5

100 Interframe, BWLZHa Interframe, var. base (n=4)b 1.5 fs 1000 0.01 0.1 11.2

100 Interframe, BWLZHa One-to-one, BWLZHb 1.5 fs 1000 0.01 0.1 8.25

100 Interframe, BWLZHa Interframe, BWLZHb 1.5 fs 1000 0.01 0.1 5.98

– Text, gzip – 15 fs 1000 0.01 – 25.8

– Text, bzip2 – 15 fs 1000 0.01 – 19.7

100 Interframe, stop bits (n=4)a – 15 fs 1000 0.01 – 9.38

100 Interframe, var. base (n=5)a – 15 fs 1000 0.01 – 9.23
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Table 4 (continued)

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

100 Intraframe, BWLZHa – 15 fs 1000 0.01 – 10.4

100 Interframe, BWLZHa – 15 fs 1000 0.01 – 8.70

100 One-to-one, XTC3a – 15 fs 1000 0.01 – 11.5

100 Interframe, BWLZHa Interframe, stop bits (n=5)b 15 fs 1000 0.01 0.1 22.0

100 Interframe, BWLZHa Interframe, var. base (n=7)b 15 fs 1000 0.01 0.1 22.1

100 Interframe, BWLZHa One-to-one, BWLZHb 15 fs 1000 0.01 0.1 19.4

100 Interframe, BWLZHa Interframe, BWLZHb 15 fs 1000 0.01 0.1 19.7

– Text, gzip – 150 fs 1000 0.01 – 25.8

– Text, bzip2 – 150 fs 1000 0.01 – 20.2

100 Interframe, stop bits (n=5)a – 150 fs 1000 0.01 – 12.5

100 Interframe, var. base (n=6)a – 150 fs 1000 0.01 – 11.9

100 Intraframe, BWLZHa – 150 fs 1000 0.01 – 11.9

100 Interframe, BWLZHa – 150 fs 1000 0.01 – 11.7

100 One-to-one, XTC3a – 150 fs 1000 0.01 – 11.5

100 Interframe, BWLZHa Interframe, stop bits (n=5)b 150 fs 1000 0.01 0.1 25.5

100 Interframe, BWLZHa Interframe, var. base (n=7)b 150 fs 1000 0.01 0.1 25.2

100 Interframe, BWLZHa One-to-one, BWLZHb 150 fs 1000 0.01 0.1 22.6

100 Interframe, BWLZHa Interframe, BWLZHb 150 fs 1000 0.01 0.1 22.8

– Text, gzip – 1.5 fs 100 0.01 – 2.58

– Text, bzip2 – 1.5 fs 100 0.01 – 2.02

100 Interframe, stop bits (n=8)a – 1.5 fs 100 0.01 – 1.51

100 Interframe, var. base (n=9)a – 1.5 fs 100 0.01 – 1.41

100 Intraframe, BWLZHa – 1.5 fs 100 0.01 – 1.34

100 Interframe, BWLZHa – 1.5 fs 100 0.01 – 1.39

100 One-to-one, XTC3a – 1.5 fs 100 0.01 – 1.20

100 One-to-one, XTC2 Interframe, stop bits (n=5)b 1.5 fs 100 0.01 0.1 2.73

100 One-to-one, XTC2 Interframe, var. base (n=7)b 1.5 fs 100 0.01 0.1 2.68

100 One-to-one, XTC2 One-to-one, BWLZHb 1.5 fs 100 0.01 0.1 2.43

100 One-to-one, XTC2 Interframe, BWLZHb 1.5 fs 100 0.01 0.1 2.44

a One-to-one, XTC2 is used for the first frame in each block
b One-to-one, BWLZH is used for the first frame in each block

Table 5 Trajectory file sizes in bytes from the liquid water simulation trajectory stored with high accuracy. The results for different compression
algorithms are shown. For comparison, the uncompressed trajectories where values are stored as 32-bit floats are shown

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– 32-bit float – 1.5 fs 1000 ≈ 10−5 – 48

– 32-bit float 32-bit float 1.5 fs 1000 ≈ 10−5 ≈ 10−5 96

– Text – 1.5 fs 1000 10−5 – 68.2

– Text, gzip – 1.5 fs 1000 10−5 – 47.6

– Text, bzip2 – 1.5 fs 1000 10−5 – 38.0

1 XTC – 1.5 fs 1000 10−5 – 28.9

1 Intraframe, var. base (n=17) – 1.5 fs 1000 10−5 – 30.0

1 One-to-one, XTC2 – 1.5 fs 1000 10−5 – 28.3

J Mol Model (2011) 17:2669–2685 2681



Table 5 (continued)

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

1 Intraframe, BWLZH – 1.5 fs 1000 10−5 – 39.6

1 One-to-one, XTC3 – 1.5 fs 1000 10−5 – 29.2

1 One-to-one, XTC2 One-to-one, stop bits (n=11) 1.5 fs 1000 10−5 10−4 57.0

1 One-to-one, XTC2 One-to-one, var. base (n=16) 1.5 fs 1000 10−5 10−4 56.2

1 One-to-one, XTC2 One-to-one, BWLZH 1.5 fs 1000 10−5 10−4 64.8

100 Interframe, stop bits (n=7)a – 1.5 fs 1000 10−5 – 20.7

100 Interframe, var. base (n=11)a – 1.5 fs 1000 10−5 – 19.4

100 Intraframe, BWLZHa – 1.5 fs 1000 10−5 – 32.4

100 Interframe, BWLZHa – 1.5 fs 1000 10−5 – 12.7

100 One-to-one, XTC3a – 1.5 fs 1000 10−5 – 26.4

100 Interframe, BWLZHa Interframe, stop bits (n=9)b 1.5 fs 1000 10−5 10−4 35.9

100 Interframe, BWLZHa Interframe, var. base (n=5)b 1.5 fs 1000 10−5 10−4 36.8

100 Interframe, BWLZHa One-to-one, BWLZHb 1.5 fs 1000 10−5 10−4 42.0

100 Interframe, BWLZHa Interframe, BWLZHb 1.5 fs 1000 10−5 10−4 34.8

– Text, gzip – 15 fs 1000 10−5 – 47.6

– Text, bzip2 – 15 fs 1000 10−5 – 38.2

100 Interframe, stop bits (n=3)a – 15 fs 1000 10−5 – 25.7

100 Interframe, var. base (n=4)a – 15 fs 1000 10−5 – 24.2

100 Intraframe, BWLZHa – 15 fs 1000 10−5 – 34.6

100 Interframe, BWLZHa – 15 fs 1000 10−5 – 26.2

100 One-to-one, XTC3a – 15 fs 1000 10−5 – 28.9

100 Interframe, var. base (n=14)a Interframe, stop bits (n=11)b 15 fs 1000 10−5 10−4 51.7

100 Interframe, var. base (n=14)a Interframe, var. base (n=17)b 15 fs 1000 10−5 10−4 52.5

100 Interframe, var. base (n=14)a One-to-one, BWLZHb 15 fs 1000 10−5 10−4 54.7

100 Interframe, var. base (n=14)a Interframe, BWLZHb 15 fs 1000 10−5 10−4 53.1

– Text, gzip – 150 fs 1000 10−5 – 47.6

– Text, bzip2 – 150 fs 1000 10−5 – 38.2

100 Interframe, stop bits (n=17)a – 150 fs 1000 10−5 – 28.3

100 Interframe, var. base (n=16)a – 150 fs 1000 10−5 – 26.8

100 Intraframe, BWLZHa – 150 fs 1000 10−5 – 34.8

100 Interframe, BWLZHa – 150 fs 1000 10−5 – 30.4

100 One-to-one, XTC3a – 150 fs 1000 10−5 – 29.0

100 Interframe, var. base (n=16)a Interframe, stop bits (n=11)b 150 fs 1000 10−5 10−4 54.9

100 Interframe, var. base (n=16)a Interframe, var. base (n=17)b 150 fs 1000 10−5 10−4 55.3

100 Interframe, var. base (n=16)a One-to-one, BWLZHb 150 fs 1000 10−5 10−4 57.6

100 Interframe, var. base (n=16)a Interframe, BWLZHb 150 fs 1000 10−5 10−4 56.4

– Text, gzip – 1.5 fs 100 10−5 – 4.77

– Text, bzip2 – 1.5 fs 100 10−5 – 3.82

100 Interframe, stop bits (n=19)a – 1.5 fs 100 10−5 – 3.06

100 Interframe, var. base (n=17)a – 1.5 fs 100 10−5 – 2.91

100 Intraframe, BWLZHa – 1.5 fs 100 10−5 – 3.49

100 Interframe, BWLZHa – 1.5 fs 100 10−5 – 3.30

100 One-to-one, XTC3a – 1.5 fs 100 10−5 – 2.90

100 One-to-one, XTC2 Interframe, stop bits (n=11)b 1.5 fs 100 10−5 10−4 5.64

100 One-to-one, XTC2 Interframe, var. base (n=13)b 1.5 fs 100 10−5 10−4 5.67

100 One-to-one, XTC2 One-to-one, BWLZHb 1.5 fs 100 10−5 10−4 5.90

100 One-to-one, XTC2 Interframe, BWLZHb 1.5 fs 100 10−5 10−4 5.78

a One-to-one, XTC2 is used for the first frame in each block
b One-to-one, BWLZH is used for the first frame in each block
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Table 6 Trajectory file sizes in bytes from the solid magnesium oxide simulation trajectory. The results for different compression algorithms are
shown. For comparison, the uncompressed trajectories where values are stored as 32-bit floats are shown

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– 32-bit float – 0.5 fs 1000 ≈ 10−5 – 49.4

– 32-bit float 32-bit float 0.5 fs 1000 ≈ 10−5 ≈ 10−5 98.8

– Text – 0.5 fs 1000 0.01 – 69.7

– Text, gzip – 0.5 fs 1000 0.01 – 20.5

– Text, bzip2 – 0.5 fs 1000 0.01 – 8.66

1 XTC – 0.5 fs 1000 0.01 – 19.1

1 Intraframe, var. base (n=8) – 0.5 fs 1000 0.01 – 16.0

1 One-to-one, XTC2 – 0.5 fs 1000 0.01 – 15.0

1 Intraframe, BWLZH – 0.5 fs 1000 0.01 – 9.53

1 One-to-one, XTC3 – 0.5 fs 1000 0.01 – 10.5

1 Intraframe, BWLZH One-to-one, stop bits (n=5) 0.5 fs 1000 0.01 0.1 22.0

1 Intraframe, BWLZH One-to-one, var. base (n=6) 0.5 fs 1000 0.01 0.1 21.3

1 Intraframe, BWLZH One-to-one, BWLZH 0.5 fs 1000 0.01 0.1 21.3

100 Interframe, stop bits (n=1)a – 0.5 fs 1000 0.01 – 3.47

100 Interframe, var. base (n=1)a – 0.5 fs 1000 0.01 – 3.04

100 Intraframe, BWLZHa – 0.5 fs 1000 0.01 – 2.62

100 Interframe, BWLZHa – 0.5 fs 1000 0.01 – 1.42

100 One-to-one, XTC3a – 0.5 fs 1000 0.01 – 2.18

100 Interframe, BWLZHa Interframe, stop bits (n=2)b 0.5 fs 1000 0.01 0.1 9.56

100 Interframe, BWLZHa Interframe, var. base (n=2)b 0.5 fs 1000 0.01 0.1 9.09

100 Interframe, BWLZHa One-to-one, BWLZHb 0.5 fs 1000 0.01 0.1 7.16

100 Interframe, BWLZHa Interframe, BWLZHb 0.5 fs 1000 0.01 0.1 6.07

– Text, gzip – 0.5 fs 1000 0.01 – 20.5

– Text, bzip2 – 0.5 fs 1000 0.01 – 14.7

100 Interframe, stop bits (n=2)a – 0.5 fs 1000 0.01 – 5.56

100 Interframe, var. base (n=2)a – 0.5 fs 1000 0.01 – 5.14

100 Intraframe, BWLZHa – 0.5 fs 1000 0.01 – 4.03

100 Interframe, BWLZHa – 0.5 fs 1000 0.01 – 3.13

100 One-to-one, XTC3a – 0.5 fs 1000 0.01 – 5.26

100 Interframe, BWLZHa Interframe, stop bits (n=5)b 0.5 fs 1000 0.01 0.1 14.2

100 Interframe, BWLZHa Interframe, var. base (n=5)b 0.5 fs 1000 0.01 0.1 13.5

100 Interframe, BWLZHa One-to-one, BWLZHb 0.5 fs 1000 0.01 0.1 12.2

100 Interframe, BWLZHa Interframe, BWLZHb 0.5 fs 1000 0.01 0.1 11.3

– Text, gzip – 50 fs 1000 0.01 – 20.5

– Text, bzip2 – 50 fs 1000 0.01 – 15.3

100 Interframe, stop bits (n=4)a – 50 fs 1000 0.01 – 9.56

100 Interframe, var. base (n=4)a – 50 fs 1000 0.01 – 8.81

100 Intraframe, BWLZHa – 50 fs 1000 0.01 – 7.43

100 Interframe, BWLZHa – 50 fs 1000 0.01 – 7.94

100 One-to-one, XTC3a – 50 fs 1000 0.01 – 8.02

100 Intraframe, BWLZHa Interframe, stop bits (n=5)b 50 fs 1000 0.01 0.1 21.4

100 Intraframe, BWLZHa Interframe, var. base (n=7)b 50 fs 1000 0.01 0.1 20.4

100 Intraframe, BWLZHa One-to-one, BWLZHb 50 fs 1000 0.01 0.1 18.6

100 Intraframe, BWLZHa Interframe, BWLZHb 50 fs 1000 0.01 0.1 19.3

– Text, gzip – 500 fs 100 0.01 – 2.06

– Text, bzip2 – 500 fs 100 0.01 – 1.53

100 Interframe, stop bits (n=4)a – 500 fs 100 0.01 – 0.943

100 Interframe, var. base (n=4)a – 500 fs 100 0.01 – 0.869

100 Intraframe, BWLZHa – 500 fs 100 0.01 – 0.794

100 Interframe, BWLZHa – 500 fs 100 0.01 – 0.807
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Table 6 (continued)

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

100 One-to-one, XTC3a – 500 fs 100 0.01 – 0.790

100 Intraframe, BWLZH Interframe, stop bits (n=5)b 500 fs 100 0.01 0.1 2.12

100 Intraframe, BWLZH Interframe, var. base (n=6)b 500 fs 100 0.01 0.1 2.04

100 Intraframe, BWLZH One-to-one, BWLZHb 500 fs 100 0.01 0.1 1.95

100 Intraframe, BWLZH Interframe, BWLZHb 500 fs 100 0.01 0.1 1.99

a Intraframe, BWLZH is used for the first frame in each block
b One-to-one, BWLZH is used for the first frame in each block

Table 7 Trajectory file sizes in bytes from the virus-in-water simulation trajectory. The results for different compression algorithms are shown.
For comparison, the uncompressed trajectories where values are stored as 32-bit floats are shown

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– 32-bit float – 2 ps 15 ≈ 10–4 – 181

– Text – 2 ps 15 0.01 – 298

– Text, gzip – 2 ps 15 0.01 – 117

– Text, bzip2 – 2 ps 15 0.01 – 95.6

1 XTC – 2 ps 15 0.01 – 59.2

1 Intraframe, var. base (n=8) – 2 ps 15 0.01 – 64.2

1 One-to-one, XTC2 – 2 ps 15 0.01 – 57.6

1 Intraframe, BWLZH – 2 ps 15 0.01 – 72.5

1 One-to-one, XTC3 – 2 ps 15 0.01 – 55.9

1 One-to-one, XTC3 (base only) – 2 ps 15 0.01 – 58.3

– Text – 2 ps 15 0.01 – 298

– Text, gzip – 2 ps 15 0.01 – 117

– Text, bzip2 – 2 ps 15 0.01 – 95.3

15 Interframe, stop bits (n=6)a – 2 ps 15 0.01 – 61.2

15 Interframe, var. base (n=8)a – 2 ps 15 0.01 – 58.2

15 Intraframe, BWLZHa – 2 ps 15 0.01 – 60.1

15 Interframe, BWLZHa – 2 ps 15 0.01 – 61.4

15 One-to-one, XTC3a – 2 ps 15 0.01 – 49.5

15 One-to-one, XTC3 (base only)a – 2 ps 15 0.01 – 53.2

15 Interframe, stop bits (n=7)a – 20 ps 15 0.01 – 68.5

15 Interframe, var. base (n=10)a – 20 ps 15 0.01 – 67.2

15 Intraframe, BWLZHa – 20 ps 15 0.01 – 63.4

15 Interframe, BWLZHa – 20 ps 15 0.01 – 69.6

15 One-to-one, XTC3a – 20 ps 15 0.01 – 51.9

15 One-to-one, XTC3 (base only)a – 20 ps 15 0.01 – 55.5

15 Interframe, stop bits (n=7)a – 200 ps 15 0.01 – 78.1

15 Interframe, var. base (n=10)a – 200 ps 15 0.01 – 75.9

15 Intraframe, BWLZHa – 200 ps 15 0.01 – 66.5

15 Interframe, BWLZHa – 200 ps 15 0.01 – 80.4

15 One-to-one, XTC3a – 200 ps 15 0.01 – 54.6

15 One-to-one, XTC3 (base only)a – 200 ps 15 0.01 – 58.0

a One-to-one, XTC3 coding is used for the first frame in each block
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Table 8 Trajectory file sizes in bytes from the virus-in-water simulation trajectory. The results for different compression algorithms are shown.
For comparison, the uncompressed trajectories where values are stored as 32-bit floats are shown

Frames in
each block

Position algorithm Velocity algorithm Time between
each frame

Number
of frames

Position
precision
(Å)

Velocity
precision
(Å/ps)

File size
(106B)

– 32-bit float – 50 ps 7 ≈ 10−4 – 84.5

– 32-bit float 32-bit float 50 ps 7 ≈ 10−4 ≈ 10−5 169

7 One-to-one, XTC2 – 50 ps 7 0.01 – 27.7

7 One-to-one, XTC2 One-to-one, stop bits (n=5) 50 ps 7 0.01 0.1 52.4

7 One-to-one, XTC2 One-to-one, var. base (n=7) 50 ps 7 0.01 0.1 50.6

7 One-to-one, XTC2 One-to-one, BWLZH 50 ps 7 0.01 0.1 51.1

7 One-to-one, XTC2 One-to-one, stop bits (n=7)a 50 ps 7 0.01 0.1 53.6

7 One-to-one, XTC2 One-to-one, var. base (n=8)a 50 ps 7 0.01 0.1 52.1

7 One-to-one, XTC2 One-to-one, BWLZHa 50 ps 7 0.01 0.1 51.9

7 One-to-one, XTC2 One-to-one, stop bits (n=5) 500 ps 7 0.01 0.1 52.5

7 One-to-one, XTC2 One-to-one, var. base (n=7) 500 ps 7 0.01 0.1 50.7

7 One-to-one, XTC2 One-to-one, BWLZH 500 ps 7 0.01 0.1 51.1

7 One-to-one, XTC2 One-to-one, stop bits (n=7)a 500 ps 7 0.01 0.1 53.6

7 One-to-one, XTC2 One-to-one, var. base (n=8)a 500 ps 7 0.01 0.1 52.1

7 One-to-one, XTC2 One-to-one, BWLZHa 500 ps 7 0.01 0.1 51.9

a One-to-one, var. base (n=7) is used for the first frame in each block
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